Continuous monitoring of tissue microphysiology is a key enabling feature of the organ-on-chip (OoC) approach for drug screening and disease modeling. Sensing charged species in OoC tissue microenvironments is thereby essential. However, the inherently small (i.e., cm) size of OoC devices poses the challenging requirement to integrate miniaturized and highly sensitive in situ charge sensing components to maximize signal extraction from small volumes (nL to µL range) of media used in these devices. Here we meet this need by presenting a novel dual-gate field-effect transistor-based charge sensor integrated within an optically transparent microelectromechanical (MEM) OoC device. Post-process mask-less decoration of Ti sensing electrodes by spark-ablated Au nanoparticle films significantly increases the effective electrode surface area and thus sensor sensitivity while retaining the CMOS-compatibility of the wafer-level fabrication process. We validate the biocompatibility of the sensor and its selective response to poly-D-lysine and KCl, and provide a perspective on monitoring cultures and differentiation of hiPSC-derived cortical neurons on our OoC device.
Keywords: Biosensor, Charge sensing, Electrodes, Microfabrication, Ogan-on-chip, Spark ablation, Neurons
DOI: 10.1109/Transducers50396.2021.9495393
Click HERE to read the full paper.
To speak with one of our Sales & Applications Engineers please call 01582 764334 or click here to email.
Lambda Photometrics is the leading UK Distributor of Characterisation, Measurement and Analysis solutions with particular expertise in Instrumentation, Laser & Light based products, Optics, Electro-optic Testing, Spectroscopy, Machine Vision, Optical Metrology, Fibre Optics, Microscopy and Anti-vibration tables & custom solutions