

Optical Filters

FOR INFRARED IMAGING SYSTEMS

Long Pass Filters

These optical filters are perfect for many imaging applications that benefit from blocking the transmission of short-wave electromagnetic radiation. They are normally positioned in front of a camera's objective lens or between the camera's lens and imaging sensor. When positioned as such, the LPF filters attenuate short wavelength radiation from UV up to the cut-on wavelength, and transmit longer wavelength radiation from the cut-on wavelength and longer. Custom filter wavelength characteristics and sizes are available upon request.

FEATURES

- Highly transmissive in near-infrared band
- Blocks short wavelengths from UV through visible
- Sharp cut-on with 40nm transition from 1% to first peak (typical)

SPECIFICATIONS	
Diameter	25.4mm +0.0/-0.25mm
Clear Aperture	20mm
Thickness	3-5mm (nominal)
Surface Finish	Commercial polish
Blocking Range	B _{range} to 85% of cut-on wavelength, 0.1% transmittance
Rise from 1% T to first peak	40nm typical

Definitions:

 λ_c = Cut-on wavelength at which transmission is 50% of T_{peak}

 T_{peak} = Typical Average Transmission in passband

Short Pass Filters

These optical filters are perfect for many imaging applications that benefit from transmitting short-wave electromagnetic radiation and blocking longer, near-infrared wavelengths. They are normally positioned in front of a camera's objective lens or between the camera's lens and imaging sensor. When positioned as such, the SPF filters transmit short wavelength radiation from UV up to the cut-off wavelength, and attenuate longer wavelength radiation from the cut-off wavelength and longer. Custom filter wavelength characteristics and sizes are available upon request.

FEATURES

- Highly transmissive up to near-infrared band
- Blocks wavelengths from near-infrared and longer
- Sharp cut-off with 40nm transition from 1% to first peak (typical)

SPECIFICATIONS	
Diameter	25.4mm +0.0/-0.25mm
Clear Aperture	20mm
Thickness	3-5mm (nominal)
Surface Finish	Commercial polish
Blocking Range	120% of cut-off wavelength to B _{range'} 0.1% transmittance
Rise from 1% T to first peak	40nm typical

 $\mathbf{P}_{\text{range}}$ = Passband spectral range

 \mathbf{B}_{range} = Blocking spectral range

Band Pass Filters

These optical filters are perfect for many imaging applications that benefit from blocking out-of-band electromagnetic radiation while passing a certain narrow wavelength region. These filters are normally positioned in front of a camera's objective lens or between the

camera's lens and imaging sensor. When positioned as such, the filters attenuate (by reflection and absorption) out-of-band transmission and transmit the desired narrow spectral region. Custom filter wavelength characteristics and sizes are available upon request.

Definitions:

 λ_c = Cut-on wavelength at which transmission is 50% of T

 $T_{peak} = Minimum Peak$ $T_{peak} = Minimum Peak$ Transmission (%)

 $\mathbf{HW} = \text{Half-width at 50\%}$ T_{peak}

B_{range} = Blocking spectral range

CWL = Center Wavelength of passband

FEATURES

- Narrow bandpass in near-infrared band
- Sharp transition assures precise blocking
- Excellent in-band transmission

SPECIFICATIONS	
Diameter	25.4mm +0.0/-0.25mm
Clear Aperture	20mm
Thickness	6.4mm (nominal)
Surface Finish	Commercial polish

Neutral Density Filters

These optical filters attenuate incident electromagnetic radiation by absorption and reflection over a broad spectral range. They are perfect for many imaging applications that benefit from attenuating the transmission of short-wave infrared radiation. Custom filter wavelength characteristics are available upon request.

Definitions:

OD = Optical Density

T = Transmittance (%)

 $\mathbf{P}_{\text{range}}$ = Operating Spectral Pass band

FEATURES

- Highly transmissive in near-infrared band
- Blocks short wavelengths from UV through visible
- Sharp cut-on with 40nm transition from 1% to first peak (typical)

SPECIFICATIONS	
Diameter	25.4mm +0.0/-0.25mm
Clear Aperture	22.8mm
Thickness	< 5mm (nominal)
Surface Finish	Commercial polish

Because of ongoing product updates, specifications are subject to change without notice.

Contact us today to discuss how our Optical Filters can meet your application requirements.

Ordering Information

SHORT PA	SHORT PASS OPTICAL FILTERS		
ITEM	PART NO.	DESCRIPTION	
SPF-700	909049	λ_c =700nm ±10nm, T _{peak} =75%, P _{range} to 415nm, B _{range} to 1,200nm	
SPF-750	909078	λ_c =750nm ±10nm, T_{peak} =70%, P_{range} to 415nm, B_{range} to 1,200nm	
SPF-800	909080	λ_c =800nm ±10nm, T_{peak} =75%, P_{range} to 415nm, B_{range} to 1,200nm	
SPF-850	909079	λ_c =850nm ±10nm, T_{peak} =75%, P_{range} to 415nm, B_{range} to 1,200nm	
SPF-900	909075	λ_c =900nm ±10nm, T_{peak} =75%, P_{range} to 415nm, B_{range} to 1,200nm	
SPF-950	909054	λ_c =950nm ±10nm, T_{peak} =75%, P_{range} to 415nm, B_{range} to 1,200nm	
SPF-1000	909081	λ_c =1,000nm ±10nm, T_{peak} =75%, P_{range} to 415nm, B_{range} to 1,200nm	
SPF-2000	909077	λ_c =2,000nm ±50nm, $T_{\rm peak}$ =70%, $P_{\rm range}$ to 1,500nm, $B_{\rm range}$ to 4,500nm	
SPF-3000	909073	λ_c =3,000nm ±100nm, T_{peak} =70%, P_{range} to 1,700nm, B_{range} to 10,000nm	
SPF-4100	909074	λ_c = 4,100nm ±100nm, T _{peak} = 70%, P _{range} to 2,500nm, B _{range} to 10,000nm	

NEUTRAL	DENSITY (OPTICAL FILTERS
ITEM	PART NO.	DESCRIPTION
NDF-0.1	909048	OD=0.1, T=79.4%, P _{range} = 400 to 2,500nm
NDF-0.2	909050	OD=0.2, T=63.1%, P _{range} = 400 to 2,500nm
NDF-0.3	909051	OD=0.3, T=50.1%, P _{range} = 400 to 2,500nm
NDF-0.4	909052	OD=0.4, T=39.8%, P _{range} = 400 to 2,500nm
NDF-0.5	909053	OD=0.5, T=31.6%, P _{range} = 400 to 2,500nm
NDF-0.6	909076	OD=0.6, T=25.1%, P _{range} = 400 to 2,500nm
NDF-0.7	909055	OD=0.7, T=19.9%, P _{range} = 400 to 2,500nm
NDF-0.8	909056	OD=0.8, T=15.8%, P _{range} = 400 to 2,500nm
NDF-0.9	909057	OD=0.9, T=12.6%, P _{range} = 400 to 2,500nm
NDF-1.0	909058	OD=1.0, T=10.0%, P _{range} = 400 to 2,500nm
NDF-1.5	909059	OD=1.5, T=3.2%, P _{range} = 400 to 2,500nm
NDF-2.0	909060	OD=2.0, T=1.0%, P _{range} = 400 to 2,500nm
NDF-3.0	909061	OD=3.0, T=0.1%, P _{range} = 400 to 2,500nm
NDF-4.0	909062	OD=4.0, T=0.01%, P _{range} = 400 to 2,500nm
NDFL-0.3	909067	OD=0.3, T=50.1%, P _{range} = 2,000 to 14,000nm
NDFL-0.6	909068	OD=0.6, T=25.1%, P _{range} = 2,000 to 14,000nm
NDFL-1.0	909069	OD=1.0, T=10.0%, P _{range} = 2,000 to 14,000nm
NDFL-2.0	909070	OD=2.0, T=1.0%, P _{range} = 2,000 to 14,000nm
NDFL-3.0	909071	OD=3.0, T=0.1%, P _{range} = 2,000 to 14,000nm
NDFL-4.0	909072	OD=4.0, T=0.01%, P _{range} = 2,000 to 14,000nm

LONG-PASS	OPTICAL FILT	ERS
ITEM	PART NO.	DESCRIPTION
LPF-700	909042	λ_{c} =700nm ±10nm, T_{peak} =75%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-750	909043	λ_{c} =750nm ±10nm, T_{peak} =75%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-800	909044	λ_{c} =800nm ±10nm, T_{peak} =75%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-850	909045	λ_{c} =850nm ±10nm, T_{peak} =75%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-900	909046	λ_{c} =900nm ±10nm, T_{peak} =75%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-950	909064	λ_{c} =950nm ±10nm, T_{peak} =75%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-1000	909047	λ_{c} =1,000nm ±10nm, T _{peak} =75%, P _{range} to 2,500nm, B _{range} to 100nm
LPF-1100	914820	λ_{c} =1,100nm ±10nm, T_{peak} =65%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-1200	914821	λ_{c} =1,200nm ±10nm, T $_{peak}$ =65%, P $_{range}$ to 2,500nm, B $_{range}$ to 100nm
LPF-1300	914822	λ_{c} =1,300nm ±10nm, T $_{peak}$ =65%, P $_{range}$ to 2,500nm, B $_{range}$ to 100nm
LPF-1400	914823	λ_c =1,400nm ±10nm, T_{peak} =65%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-1500	914824	λ_{c} =1,500nm ±10nm, T_{peak} =65%, P_{range} to 2,500nm, B_{range} to 100nm
LPF-2000	909063	$\lambda_{\rm c}$ =2,000nm ±50nm, T $_{\rm peak}$ =70%, P $_{\rm range}$ to 4,000nm, B $_{\rm range}$ to 100nm
LPF-3000	909065	$\lambda_{\rm c}$ =3,000nm ±50nm, T $_{\rm peak}$ =70%, P $_{\rm range}$ to 6,000nm, B $_{\rm range}$ to 100nm
LPF-4000	909066	λ_c =4,000nm ±100nm, T_{peak} =70%, P_{range} to 5,000nm, B_{range} to 100nm

Ordering Information

BAND PASS	OPTICAL FILTER	S I
ITEM	PART NO.	DESCRIPTION
IF-700	909011	λ _c =700nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-710	909012	λ _c =710nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-720	909013	λ _c =720nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-730	909014	λ _c =730nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-740	909015	λ _c =740nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-750	909016	λ _c =750nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-760	909017	λ _c =760nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-770	909018	λ _c =770nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-780	909019	λ _c =780nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-790	909020	λ _c =790nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-800	909021	λ _c =800nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-810	909022	λ _c =810nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-820	909023	λ _c =820nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-830	909024	λ _c =830nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-840	909025	λ _c =840nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-850	909026	λ _c =850nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-860	909027	λ _c =860nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-870	909028	λ _c =870nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-880	909029	λ _c =880nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-890	909030	λ _c =890nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-900	909031	λ _c =900nm ±2nm, HW=10nm ±2nm, T _{peak} =50%, B _{range} 300-1,200nm, 0.01% blocking
IF-910	909032	λ _c =910nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-920	909033	λ _c =920nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-930	909034	λ _c =930nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-940	909035	λ _c =940nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-950	909036	λ _c =950nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-960	909037	λ _c =960nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-970	909038	$\lambda_{\rm c}$ =970nm ±2nm, HW=10nm ±2nm, T $_{\rm peak}$ =45%, B $_{\rm range}$ 300-1,200nm, 0.01% blocking
IF-980	909039	λ_{c} =980nm ±2nm, HW=10nm ±2nm, T $_{peak}$ =45%, B $_{range}$ 300-1,200nm, 0.01% blocking
IF-990	909040	λ_{c} =990nm ±2nm, HW=10nm ±2nm, T $_{peak}$ =45%, B $_{range}$ 300-1,200nm, 0.01% blocking
IF-1000	909002	λ_{c} =1,000nm ±2nm, HW=10nm ±2nm, T $_{peak}$ =45%, B $_{range}$ 300-1,200nm, 0.01% blocking
IF-1010	909003	λ _c =1,010nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-1020	909004	$\lambda_{\rm c}$ =1,020nm ±2nm, HW=10nm ±2nm, T $_{\rm peak}$ =45%, B $_{\rm range}$ 300-1,200nm, 0.01% blocking
IF-1030	909005	$\lambda_{\rm c}$ =1,030nm ±2nm, HW=10nm ±2nm, T $_{\rm peak}$ =45%, B $_{\rm range}$ 300-1,200nm, 0.01% blocking
IF-1040	909006	λ_{c} =1,040nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-1050	909007	$\lambda_{\rm c}$ =1,050nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-1060	909008	$\lambda_{\rm c}$ =1,060nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-1064	914819	λ _c =1,064nm ±2nm, HW=10nm ±2nm, T _{peak} =45%, B _{range} 300-1,200nm, 0.01% blocking
IF-1300	909009	λ_{c} =1,300nm ±2nm, HW=10nm ±2nm, T $_{peak}$ =40%, B $_{range}$ UV-Far-IR, 0.01% blocking
IF-1550	909010	λ_{c} =1,550nm ±2nm, HW=10nm ±2nm, T $_{peak}$ =35%, B $_{range}$ UV-Far-IR, 0.1% blocking

Characterisation, Measurement & **Analysis**

Lambda Photometrics Limited Lambda House Batford Mill Harpenden Herts AL5 5BZ United Kingdom

E: info@lambdaphoto.co.uk
W: www.lambdaphoto.co.uk
T: +44 (0)1582 764334
F: +44 (0)1582 712084