Li-ion battery sample preparation

Model 1061 and Model 1062 argon ion mills

Versatile broad ion beam mills for SEM applications

- Produces ideal results for both planar and cross-section samples
- Wide-ranging ion energies allow either rapid milling or gentle polishing on a broad variety of sample materials
- Artifact-free samples are readily produced
- Easy-to-use interface
- Fully automated, including precise sample height detection, for high-throughput applications

Model 1061 SEM Mill

Model 1062 TrionMill

Features

- Produces ideal results for both planar and cross-section samples
- Wide-ranging ion energies from 0.1 to 10 keV
- Adjustable beam size from 300 µm to 5 mm
- Milling angles from 0 to 10°
- Liquid nitrogen stage cooling (optional)

Model 1061 SEM Mill

Model 1062 TrionMill

- In situ sample viewing and capture (optional)
- Vacuum or inert gas sample transfer (optional); cryogenic sample transfer (optional, Model 1062 only)
- Fully automated, including precise sample height detection, for highthroughput applications
- None, continuous, or rocking stage motion

Features

- Two ion sources
- Sample size up to 32 mm diameter

Model 1062 TrionMill

- Three ion sources
- Sample size up to 50 mm diameter
- Flexibility in beam position

50 mm

Importance of sample preparation

Ion milling at 6 kV without stage cooling

Thermal damage is observed

Ion milling at 6 kV with stage cooling

Oxide and hydrocarbon formation on the sample surface

In both cases, no Li microstructure was revealed.

Model 1061 controlled environment workflow

Glove box with Ar positive pressure

Fischione Instruments Vacuum/Inert Gas Transfer Capsule

Fischione Instruments Model 1061 SEM Mill

SEM / FIB with **Quorum** PP3004 Airlock

Glove box with **Quorum** transfer chamber

Fischione Instruments Vacuum/Inert Gas Transfer Capsule

Model 1062 controlled environment workflow

Glove box with Ar positive pressure

Fischione Instruments Model 1062 TrionMill Vacuum/Inert Gas/Cryogenic Transfer

Fischione Instruments Model 1062 TrionMill

SEM / FIB with **Quorum** PP3004 Airlock

Fischione Instruments Model 1062 TrionMill Vacuum/Inert Gas/Cryogenic Transfer

Vacuum/inert gas/cryogenic transfer system

Allows direct transfer of a sample at vacuum, in inert gas, or in a cryogenic environment to the SEM or FIB.

Transfer system design in collaboration with Quorum.

Applications

Li metal characterization

Sample transfer validation

High-quality EBSP confirms no oxidation nor contamination of sample after transfer.

101 III Grain Boundaries

100.0%

- > 5°

EDS at 3 kV

EDS study shows the chemical composition of different elements of a Li ion battery cell

NCM cathode particles after 500 cycles

Cracks at the grain boundaries (red arrow) are due to cycled charge and discharge during battery lifetime.

The core voids (gold arrow) come from NCM powder synthesis.

Ceramic-coated separator

Perfectly preserved porous structure of polymer separator can be observed after ion milling with cryogenic conditions.

Graphite-silicone anode

Graphite silicon anode 9:1 ratio

Li ion battery polymer separator

Cross-section sample; 6 keV beam energy and cryogenic milling conditions

The pore structure is completely preserved, which allows accurate porosity measurement.

Solid state Li ion battery

Large cross-section sample

Solid state Li ion battery

Large cross-section sample

High quality EBSP confirms no oxidation nor contamination of sample after transfer

> FISCHI NE INSTRUMENTS

Solid state Li ion battery

Large cross-section sample

	Cu current collector: 25 µm	
	Li metal anode: 230 µm	
	SEI: 30 μm	
	SSE: 600 μm	LPS SSE
Cu Ni, Co, O, Mn S, P	NCM cathode: 80 µm	
100µm		

EDS at 6 kV

Distribution in the UK & Ireland

Characterisation, Measurement & Analysis Lambda Photometrics Limited Lambda House Batford Mill Harpenden Herts AL5 5BZ United Kingdom

- E: info@lambdaphoto.co.uk
- W: www.lambdaphoto.co.uk
- T: +44 (0)1582 764334
- F: +44 (0)1582 712084