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A general method of surface profiling with phase-shifting interferometry techniques uses iterative linear
regression to fit the sequence of interferograms to a physical model of the cavity. The physical model
incorporates all important cavity influences, including environmentally induced rigid-body motion,
phase shifter miscalibrations, multiple interference, geometry-induced spatial phase-shift variations,
and their cross-couplings. By incorporating an initial estimate of the surface profile and iteratively solv-
ing for space- and time-dependent variables separately, convergence is robust and rapid. The technique

has no restriction on surface shape or departure.
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1. Introduction

Phase-shifting interferometry (PSI) [1] is a powerful
tool in optical metrology, widely used for precision
measurements of optical wavefronts and surface
profiling. In profiling applications, the surface under
test is part of an optical cavity and illuminated to
produce an interference pattern (interferogram)
between wavefronts reflected from the test and refer-
ence surfaces of the cavity. Analysis of the intensity
variation from a sequence of phase-shifted interfero-
grams taken while modulating the cavity’s optical
path difference (OPD) determines the wavefront
phase. The spatial map of these phases represents
the modulo-2z OPD between the two surfaces of the
cavity, which relates back to the physical surface
topography using the illumination wavelength and
the known reference surface topography.

The number of interferograms in the sequence,
their phase spacing (phase-shift increment), and
the algorithm coefficients determine the performance
characteristics of the algorithm against a variety of
error sources, including errors in the phase-shift in-
crement (detuning error), multiple reflections, and
environmental influences like vibration [2]. Modern
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PSI algorithms address these error sources but none-
theless assume a known phase-shift increment [1],
making them susceptible to disturbances that change
this value. Additionally, cross coupling between
different error sources remains a limitation to PSI
performance [3].

The model-based PSI or MPSI technique described
in this paper [4—6] fits the interferogram sequence to
a mathematical model that includes all, or at least
the most important, physical variations that occur
during the acquisition. In principle, this approach
can handle all major error sources and their cross
coupling as long as the model correctly includes their
influence and sufficient information is obtained in
the acquisition to adequately decouple the contribu-
tions. The resulting coupled, nonlinear model equa-
tions cannot be solved directly, so the approach is to
linearize the model and apply iterative least-squares
(LS) techniques. Though this approach has been con-
sidered before [7—12], the large number of unknowns
has made efficient solutions difficult, producing un-
reliable or slow convergence or requiring restricted
physical models that do not account for many impor-
tant effects. No previous work has been general
enough to account for all of the influences mentioned
above and their cross couplings.

This model-based approach is applicable to any
interferometer type; however in this paper I describe



MPSI applied specifically to precision measurements
with a mechanically phase-shifted laser Fizeau inter-
ferometric profiler, a common surface profiling tool.
For this application the goal is not to achieve envi-
ronmental immunity but rather to reach a higher
level of performance under conditions found in stan-
dard practice. The method assumes the presence of,
and attempts to improve upon, an initial phase map
produced from an initial PSI measurement. In this
regard, it is similar to the vibration compensation
(VC) method described in a previous publication
[13]; however, unlike VC, MPSI can account for most
physical effects and their coupled interactions natu-
rally. The benefits of having the initial phase map
include improved convergence, excellent correction
over a large variety of errors, and no restrictions
on surface shape or interferometer type.

I first detail the mathematical model and iteration
sequence and then use simulated data examples to
highlight the major points and verify the perfor-
mance. Real data examples follow to illustrate
significant improvements under realistic conditions.

2. MPSI Applied to Mechanically Phase-Shifted Fizeau
Interferometers

Figure 1 depicts a typical PSI measurement system
using a Fizeau optical geometry. A piezoelectric
transducer moves the reference surface along the Z
axis in a known manner while a digital camera with
N pixels images the object so that each camera pixel
corresponds to a unique position on the object
surface. The camera samples the cavity interference
at discrete times ¢; with j = 1...F so that F' camera
frames are acquired with nominal phase shifts corre-
sponding to those desired by the chosen PSI algo-
rithm. Camera shuttering is employed to eliminate
motion-induced contrast blurring.

The mathematical model applied to this cavity as-
sumes that the reference surface is a low-reflectivity
dielectric (glass), and the cavity is restricted to rigid
body motion, both typically excellent approximations.
The interference signal between the wavefronts
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Fig. 1. Typical laser Fizeau interferometer system configured to
measure a sphere.

Reference

reflected from the test and reference surfaces is given
by the familiar Airy formula,

~/Tref + A/ Ttest exp[i@(x, t)] 2 (1)
1+ A/ TrefTtest exp[i@(x, t)] '

where ¢ and ry; are the reference and test intensity
reflectivity magnitudes and O(x, ¢) is the optical phase
delay between the two surfaces at image location
(pixel) x and time ¢. Note that here and in what fol-
lows, the time variable is understood to be discretely
sampled, so explicitly subscripting the time variable
with jis suppressed. A Fourier series expansion of this
formula to order K is

I(x,t) =

K
Ix.) =A® +V(®) Y (=)' coslk®x.0)].  (2)
k=1

where A(x) and V (x) are the DC and interference con-
trast intensity terms, respectively, and g = ,/TrefTtest-
Typical laser Fizeau glass reference surfaces have an
intensity reflectivity of s ~ 4%, so the series can be
terminated at the cos(3@) term with less than 1%
intensity error even for a ri.s ~ 90%. Cavity motions
are modeled through the definition of ©:

O(x,t) = O(x) + A(x, 1), (3)

where ®(x) is the cavity phase map evaluated at time
to, and A(x,t) describes the various processes that
modify the optical phase:

A(x.2) = @(to) + a(t)x + p(t)y

+ [p(®) = o(to)]ly/ 1 = p(x)*c?, 4)
where ¢(t) is the time variation of the phase shift
along the Z axis, a(t) and f(¢) are the two orthogonal
rigid-body tilt coefficients, p(x)2 = x%2 +y2, ¢ is the
phase curvature, and time ¢, represents the point
in the phase shift for which the phase map is evalu-
ated—often the first frame in the sequence. The last
term in A accounts for the spatial dependence of the
phase shift when mechanically shifting a spherical
cavity along the Z axis [14] and can be significant
in fast spherical cavities. This term is absent for a
plano cavity (since ¢ = 0) or if mechanical phase shift-
ing is replaced with wavelength tuning.

3. Initial Estimates and lteration

The mathematical model given by Egs. (2) and (3)
accounts for all the error sources mentioned in the
introduction but is highly coupled and nonlinear.
The model contains three time-independent un-
knowns A(x), V(x), and ®(x), three time-dependent
unknowns ¢(t), a(t), and f(¢), and two unknown con-
stants ¢ and g, for a total of 3N + 3F + 2 unknowns,
which can easily run into the millions considering
the pixel density of modern cameras. Ultimately, it
is the phase map ®(x) that is interesting for profiling
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applications and separating the time-dependent and
time-independent unknowns is an efficient solution
path. To this end, an iterative scheme alternately
solves for the time-dependent unknowns and then
the time-independent ones using linearized versions
of the model.

The process begins by acquiring initial estimates
for A(x), V(x), and ®(x). These estimates need not
be of high quality and are relatively easy to produce.
For example, A(x) and V(x) are initially estimated
with

A(x) = {max(l,,(x.?)] + min[l,, (x.?)]}/2
V(x) = {maxI,, (x.t)] - min[l,,(x.)]}/2.  (5)

where I,,(x,t) is a measured intensity, and both the
max() and min() functions operate over all interfero-
grams in the acquired sequence. The requirement of
an initial phase map ®(x) might seem to be a weak
point; however, recall that we are interested in im-
proving on PSI performance for typical applications,
not achieving vibration immunity. There are many
options for obtaining the initial phase map estimate,
and the choice can influence the MPSI convergence
depending on how closely the initial phase map
reflects the true profile. Following [13], this paper
uses a PSI algorithm applied to some fraction of
the interferogram sequence to obtain an initial
®(x), and this choice turns out to be quite adequate
in a large variety of applications.

Treating the initial estimates for the time-
independent variables as constant, fitting each inter-
ferogram in the sequence to a linearized form of
the mathematical model provides new estimates
for the time-dependent variables and the curvature
c. Writing

0n(t) = @(t) + ¢'(?)
a, () = a(t) + o (t)

Bn(t) = ) + B (@)
c,=c+c, (6)

where the subscript n denotes a new estimate and a
prime represents small deviations from the current
value, a straightforward linearization to the first or-
der in the deviations means the new intensity can be
written as

I(x,t) =I(x,t) + -
+ ¢’ @Oy (x) + a' @)x + f' )y + c'n(x. )]H (x,2),
(7

with
K
H(x.t) = -V(x) Y (-g)* 'k sinlkO(x.2)].  (8)
k=1
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and

7(x) = /1 -p(x)*c?

n(x.8) = ~[p) - e(to)lp(x)*c/r(x). )

Since Eq. (7) is linear in the deviations, standard lin-
ear regression techniques apply. The merit function

x(@),

1 E ML)~ Li(x. )]

serves both as a data quality and minimization met-
ric, and the sum is over a set of M spatial locations
with M < N. The merit function is normalized by the
contrast so that the maximum value when integrated
over 2z of phase is 1. Once the deviations are found,
the time-dependent variables are updated with
Eq. (6).

The time-dependent variables are then treated as
constant when determining new estimates for the
time-independent variables A(x), V(x), and ®(x).
To this end, the coefficients of the different interfer-
ence orders are solved directly and independently by
rewriting Eq. (2) as

K
I(x.t) = A(X) + Y _ Cy(x) coslkA(x, )]

k=1
K
+ ) Sp(x) sin[kA(x, 1)), (11)
k=1
with
Cr(x) = V(x)(-2)*! cos[k®(x)]
S.(x) = -V (x)(-g)*! sin[k®(x)]. (12)

Equation (11) is linear in A(x), Cr(x), and S;(x), so
again standard LS techniques can be applied for each
of the M spatial locations, but now each is processed
along the time axis. The original time-independent
variables are recovered with

V(x) = /C1(®)? +51(x)*

®(x) = tan"![-S;(x)/C;(x)]. (13)

and if the interference model order (K) is greater
than one, a new estimate for g follows from

g= Z?il \/Cz(xi)2 + Sa(x;)?
Z?il V(x;)
Although not explicitly shown here for brevity,

weighting factors to the various LS fits can account
for data quality. The merit function inverse y(¢)~! in

(14)
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Fig. 2. MPSI process flow.

particular can be a useful data quality metric for the
time-independent fits. Iterating between solving for
the time-dependent and time-independent variables
continues until a termination condition is satisfied.
Figure 2 depicts this measurement process flow.

Though this procedure involves significant compu-
tation, spatially subsampling the interferogram field
to a set of M spatial locations substantially reduces
the computation time. Typically a few thousand uni-
formly distributed spatial locations is sufficient,
representing less than 1% of the total number of
pixels in modern imagers. In this way, the overall
processing speed is increased by a factor of 100 or
more. MPSI also converges quickly, often requiring 10
or fewer iterations. There are two main reasons for
the rapid convergence: the availability of a starting
phase map and the separation of the time-dependent
and time-independent solutions. The result is that a
typical MPSI analysis completes in a fraction of a
second using modern personal computers.

4. Method Performance—Simulations

Unlike PSI or VC, the iterative nature of MPSI
makes it difficult to derive analytic formulas for
environmental sensitivity, so simulations were used
to evaluate MPSI performance over a large range of
cavity, environmental, and acquisition conditions.

A. Convergence

In general, the simulations show the algorithm
converges to the correct surface profile as long as
two conditions are met:

1. Intensity information is available over a broad
enough range of optical phases.

2. Environmental conditions are not so extreme
that the initial phase map fails catastrophically.

The first condition underscores the fact that phase
extraction using a LS method from a limited set of
intensities distributed about the unit circle is most
robust if the complete circle (the full 2z range of
phases) is sampled, since that minimizes the pos-
sibility of degenerate solutions. This concept is called
phase diversity [13], and sampling the full unit circle
implies a phase diversity of 2z. All phase extraction

algorithms attempt to maximize phase diversity
with a limited set of samples.

The second condition is a consequence of using a
PSI algorithm to produce the initial phase map,
which determines the surface phase through the
arctangent of the ratio of two filtered intensity se-
quences [1]. Catastrophic failures in PSI algorithms
occur in two ways: (1) the vibration shifts the signal
outside the filter band-pass, causing indeterminate
phases and giving rise to data dropouts, or (2) the vi-
bration changes the phase-shift direction, producing
a = phase discontinuity across fringe orders.

Alternative methods of acquiring a starting phase
map do not suffer from these failure modes. An exam-
ple is the rapid acquisition of two adjacent interfero-
grams in quadrature which, along with the DC
estimate, provides an initial phase map with signifi-
cantly less sensitivity to harsh environmental condi-
tions but requires additional hardware [15,16]. In
another case, two arbitrary frames in relative quad-
rature (plus the DC estimate) are used, with the
phase sign determined by correlating the phase
shifts with the known imparted phase-shift sequence
[17]. In this variant, the vibration performance im-
proves with the number of interferograms acquired.

A convenient and useful iteration termination
condition is that the fractional change in the frame
merit function y(¢) [Eq. (10)] between iterations falls
below a certain threshold—typically 0.1% is chosen.
Figure 3 shows a typical plot of the mean of this
termination metric (averaged over all interfero-
grams) versus iteration number. The fractional merit
function change drops by almost an order of magni-
tude per iteration at the beginning of the loop, con-
verging rapidly to changes of less than 1% in about 6
iterations. The figure shows that a termination
metric threshold of 0.1% is sufficient to achieve
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Fig. 3. Typical plot of the surface RMS error and the mean merit
function change as a function of the number of iterations. A merit
function change threshold of 0.1% is typically used as an iteration
termination condition. The arrows indicate which axis to use for
which curve.
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subnanometer-level surface profiles, and the process
typically terminates in less than 10 iterations.

B. Vibration Performance

A significant feature of MPSI is its ability to account
for all rigid body motions of the surfaces that make
up the cavity. In general, MPSI accounts well for
environmental vibrations as long as the convergence
conditions mentioned in the previous section are
satisfied. Compared to plano cavities, mechanically
phase-shifted spherical cavities have an additional
variable (the phase curvature c¢), and the last term
in A(x,t) requires knowing the total phase-shift dif-
ference between interferograms measured between
time ¢ and ¢, (the point in the phase shift for which
the phase map is evaluated). Since the phases are
measured modulo-27, an additional phase unwrap-
ping step is required, creating errors in the last term
if any phase increment exceeds n. These additional
considerations make spherical cavities more suscep-
tible to vibrations than plano cavities.

The two convergence conditions imply that MPSI
vibration performance in this paper is primarily
linked to the vibration performance of the PSI algo-
rithm chosen for the initial phase map. It is straight-
forward to estimate the vibration amplitude required
to violate the first condition, at least for pure piston
vibrations. Figure 4 shows this amplitude (in nano-
meters) as a function of vibrational frequency for a
well-known 13-frame PSI algorithm [18]. Numerical
simulation shows the greatest amplitude restrictions
at vibrational frequencies of % and 34 of the frame
rate. However, even at those frequencies, vibration
amplitudes up to ~70 nm can be accommodated,
representing quite a severe vibration for typical
applications.

To illustrate a number of performance features of
MPSI, Fig. 5 represents the residual measurement
error maps (difference between true and measured
surfaces) derived from simulations with a challeng-
ing cavity configuration—a fast spherical cavity with
moderately high finesse under various vibration

10000
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100 — — —
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Maximum Vibration Amplitude (nm)

=
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o

0.2 0.4 0.6 0.8 1
Vibration Frequency Normalized to Frame Rate
Fig. 4. Maximum allowed pure piston vibration amplitude for

convergence as a function of vibration frequency normalized to
the frame rate when using the 13-frame algorithm.
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RMS = 0.98 nm
PV =893nm

RMS =0.35nm
PV =349nm

No Vibrations, Height scale = £5nm

RMS =537 nm
PV =226nm

RMS = 0.42 nm
PV =543 nm

20nm Vibrations, Height scale = £+12nm

RMS = 18.6 nm
PV =731nm

RMS = 0.41 nm
PV =552nm

60nm Vibrations, Height scale = +35nm

Fig. 5. Surface error maps for conventional PSI (left column) and
MSPI (right column) from simulations of a 4%—40% fast spherical
cavity with no vibrations (top), 20 nm amplitude vibrations
(middle), and 60 nm amplitude vibrations (bottom). Note the
different height scales.

conditions. The test surface form was modeled as a
sphere with a 40% reflectivity and a departure of
three fringes to make it easier to observe the residual
error. The surface form and cavity configuration is
nominally similar to one of the real samples mea-
sured in Section 6. Thirteen mechanically phase-
shifted interferograms (500 x 500 pixels) with nomi-
nally 45° phase increments were generated for a
numerical aperture of 0.77 (equivalent to an F/0.65
transmission sphere) and analyzed with conven-
tional PSI. This PSI result was then used as the
initial phase map for the MPSI analysis, which used
a 0.1% termination threshold and an interference
order (K) equal to 3. The surface error maps for pure
sinusoidal piston vibrations at three different vibra-
tion amplitudes are shown; 0, 20, and 60 nm. The vi-
bration frequency corresponded to the frequency for
which the PSI algorithm has the greatest sensitivity
(V4 of the frame rate). The simulations included 8-bit
intensity digitization and 1 bit of normally distrib-
uted random intensity noise. A HeNe wavelength



(633 nm) was assumed when translating the phase
error into nanometers.

First note that the PSI result has a measurable
error even when vibrations are absent. The errors
are due to cross coupling between the cavity finesse
and spatially dependent detuning caused by
mechanical phase-shifting [3]. As expected, the
largest errors occur at the edges of the field where
the illumination angles are greatest, producing a
peak-valley error of about 9 nm even in perfectly
quiet conditions.

As the vibration amplitude increases, the vibra-
tional error surpasses the cross-coupling error in
PSI so the residual error profile is dominated by
the two-cycle “ripple” characteristic of vibration
disturbances. For PSI, the RMS surface error at
60 nm vibration amplitude is almost 20x higher than
the quiescent result. In contrast, the MSPI-derived
surface is not significantly affected by the cavity
finesse, the spatially dependent phase shift varia-
tion, or vibration amplitude and exhibits essentially
the identical surface map under all conditions with
an RMS error close to the theoretically expected
value from intensity uncertainty alone (0.30 nm).

5. Factors that Can Influence Performance

The model described in Section 2 includes many of
the influences found in standard practice but is
not comprehensive. Furthermore it makes certain
assumptions that will be violated to some degree in
real-world applications. This section calls attention
to these model deficiencies and describes their effect
on the final surface profile.

A. Air Turbulence

The model specifically assumes the cavity surfaces
respond as rigid bodies to environmental influences.
With regard to mechanical vibrations, this is an
excellent approximation, certainly for the objects
typically profiled with PSI techniques and vibration
amplitudes considered in this paper. Air turbulence,
however, is not considered. Air turbulence introduces
errors in the calculated rigid-body parameters, which
in turn produce globally incorrect phase shifts. Thus,
spatially localized turbulence with a specific ampli-
tude introduces a smaller amplitude distortion with
a spatial frequency content that depends on the
surface departure. Since turbulence is usually sto-
chastic, the standard remedy is to average enough
measurements to reduce the residual error below a
required value. For extreme vibration or turbulent
conditions, instantaneous measurement methods,
for example carrier fringe methods, may be more
appropriate [19].

B. Starting Phase Map

For plane cavities (or spherical cavities measured
with wavelength tuning methods), the quality of
the starting phase map influences the convergence
rate but does not prevent convergence to the correct
profile as long as the convergence conditions in

Section 4.A are satisfied. Generally, spherical
cavities act similarly, but the added curvature vari-
able and additional phase unwrapping step needed
to calculate the last term in Eq. (4) can lead to cases
where MPSI converges to an incorrect profile,
particularly if the phase diversity is small. The prob-
ability of this occurrence decreases rapidly as the
available phase diversity increases, making it
relatively rare in practice.

C. Temporal Intensity Fluctuations

Both the PSI calculation for the initial phase map
and the MPSI model assume the illumination inten-
sity is constant over the acquisition time. Deviations
from this introduce error in the contrast and DC
maps and ultimately the surface profile. The form
of the error generally depends on the surface depar-
ture, producing a ripple distortion with the same
spatial frequency content as the interference. The
illumination in well-designed PSI systems is usually
stable enough so this effect is negligible; however, the
addition of a single intensity monitor acquired simul-
taneously with the main camera can provide enough
information to correct for intensity fluctuations if
required.

D. Nonlinear Intensity Transfer Function

Ideally, the camera converts intensity into a perfectly
proportional electric signal; however, this is never
perfect for real cameras. Well-designed PSI systems
use cameras with linearity typically better than
0.1%, so this effect is usually negligible; however,
look-up tables can restore the linearity to acceptable
levels if necessary.

E. Retrace Error

Retrace error is the additional optical path length
associated with beams that are imperfectly retrore-
flected from the test surface, and so all real surfaces
exhibit some level of retrace error. The degree of re-
trace distortion depends sensitively on the optical
characteristics of the interferometer and the amount
of wavefront departure. Retrace error does not di-
rectly influence MPSI performance, and since MPSI
works well with low phase diversity, surfaces can be
measured under cavity conditions that minimize
this error.

6. Real Examples

This section demonstrates typical measurement
results of precision optical surfaces under a variety
of environmental conditions using Zygo VeriFire
XPZ and QPZ interferometers. MPSI performance
was tested on both flat and spherical cavities for a
variety of vibration conditions.

Figures 6 and 7 compare conventional PSI and
MPSI surface profiles for two representative mea-
surements made on plane and spherical objects,
respectively. In both cases pure piston vibrations
were applied with amplitudes of ~60 nm (1.19 rad)
with a normalized frequency set to the most sensitive
part of the PSI sensitivity spectrum (1/4 of the
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Fig. 6. Top profile represents a conventional PSI measurement of
a vibrated flat cavity with about five fringes of tilt. The bottom pro-
file shows the same data set processed with MPSI.

camera frame rate). The large-amplitude ripple
distortion evident in the PSI measured profiles
is absent after MPSI is applied. The PSI profile
was used as the starting phase map in both cases.
These two profiles were calculated from the identical
data sets used to demonstrate the VC method
[13] and show that MPSI performance is at least
equal to VC for these two piston-only vibrational
disturbances.

Figure 8 is an example of MPSI performance for a
cavity undergoing large combined piston and tilt mo-
tions, where applying VC was less successful. The top
plot shows the PSI-determined phase map. As is typ-
ical of tilt motions, the “ripple” distortion amplitude
from a PSI analysis is field dependent since the
phase shifts vary spatially. Additionally, the environ-
ment was severe enough to be close to violating the
convergence conditions of Section 4.A, which are
manifested as data dropouts. These dropouts occur
during the spatial phase unwrapping step in the
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Fig. 7. Top profile represents a conventional PSI measurement
of a vibrated spherical cavity with four fringes of departure.
The bottom profile shows the same data set processed with
MPSI.

PSI measurement due to branch discontinuities
caused by poorly determined phases. Again, the
PSI phase map was used as the initial phase map
for the MPSI analysis. In this case, enough of the
PSI generated phase map survived for MPSI to work
with, and the analysis accounts for the cavity mo-
tions well enough to significantly reduce phase noise
and recover all of the surface data. This particular
analysis converged in 12 iterations.

Measurements of a fast, high-reflective spherical
cavity under quiet conditions illustrate how MPSI
handles error cross coupling. The cavity consisted
of'a SiC sphere (40% reflectivity) illuminated through
an F/0.65 transmission sphere. The cavity was inten-
tionally set off-null by a few fringes to highlight the
cross-coupling error, which follows the fringe pattern
since it depends on the starting phase. The simulation
results displayed in Fig. 5 used a similar surface form
and cavity configuration.



Fig. 8. Surface profiles from a 4%—4% cavity measured with an
F/0.65 transmission sphere undergoing large tilt and piston
motions. The top profile is the surface using conventional PSI,
exhibiting ripple and data loss from phase breakup. The bottom
profile shows the same surface after MPSI processing.

The real SiC surface departed sufficiently from a
perfect sphere that simple sphere subtraction was
ineffective in exposing the cross-coupling errors
due to the residual form departure. To cancel out
the nominal surface form more effectively and high-
light these errors, differences between PSI and MPSI
surface profiles are used. The left graph of Fig. 9 dis-
plays this difference profile for the simulated cavity
(this graph is identical to the top-left graph of Fig. 5,
but looking normally at the surface), and the right
graph displays the profile difference from the real
cavity. The color scales used in the two graphs were
identical and set to +5 nm. Both difference profiles
are similar in both shape and magnitude. As one
expects from cross-coupling error, the greatest depar-
ture occurs at the field edges and follows the interfer-
ence phase. The mean ripple error at the field edge
has a PV of 8-9 nm in both cases (the larger PV
observed in the real data is due to a few single-point

RMS = 1.05 nm
PV =139mn

RMS = 0.98 nm
PV =893 nm

Fig. 9. Graphs of differences between PSI and MPSI surfaces
from a 4%—-40% fast (F/0.65) spherical cavity under quiet condi-
tions for simulated (left) and real (right) data used to highlight
the cross-coupling error. The color scale is set to +£5 nm in both
graphs.

outliers). Less than 0.5 nm of departure is observed
near the center (along the optical axis). The
agreement between real data and simulation results
provides strong support for the assertion that MPSI
accounts well for these cross-coupling terms.

7. Summary

This paper describes an iterative LS approach to PSI
accounting for most of the important physical effects
that occur during the intensity acquisition, such as
multiple interference, rigid-body surface motions,
spatial and temporal phase-shift variations, environ-
mental vibrations, and cross coupling between them.
A mathematical model accounts for all of these
physical processes, and iterative linear regression
techniques are used to find the cavity variables that
best fit the model. Iteration convergence is aided by
the presence of a PSI-created initial estimate of the
surface profile and by separately solving for the
space- and time-domain variables. Convergence is
robust, and typically fewer than 10 iterations provide
subnanometer profile accuracy. The technique can be
applied to interferometers of all types and has no
restriction on surface shape or departure.
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